A Finite Element Method for Crack Growth without Remeshing

نویسندگان

  • NICOLAS MO
  • JOHN DOLBOW
چکیده

An improvement of a new technique for modelling cracks in the nite element framework is presented. A standard displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method. A methodology that constructs the enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the proposed technique. Copyright ? 1999 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A development in the finite volume method for the crack growth analysis without global remeshing

Crack growth analysis has remained one of the challenging problems in the fracture mechanics of structures. On the other hand, the fatigue crack growth is a common phenomenon in the components of structures like airplanes, navies and fluid storages where the fracture due to crack should be considered in the design of these structures. In this paper, the finite volume method (FVM) is extended fo...

متن کامل

استفاده از دستگاه مختصات متعامد محلی در مدل کردن ترک دو بعدی به روش المان محدود توسعه یافته

The extended finite element method (X-FEM) is a numerical method for modeling discontinuties, such as cracks, within the standard finite element framework. In X-FEM, special functions are added to the finite element approximation. For crack modeling in linear elasticity, appropriate functions are used for modeling discontinuties along the crack length and simulating the singularity in the crack...

متن کامل

Modeling quasi-static crack growth with the extended finite element method Part II: Numerical applications

In Part I [Int. J. Solids Struct., 2003], we described the implementation of the extended finite element method (XFEM) within Dynaflowe, a standard finite element package. In our implementation, we focused on two-dimensional crack modeling in linear elasticity. For crack modeling in the X-FEM, a discontinuous function and the near-tip asymptotic functions are added to the finite element approxi...

متن کامل

Cracking Elements Method for Simulating Complex Crack Growth

The cracking elements method (CEM) is a novel numerical approach for simulating fracture of quasi-brittle materials. This method is built in the framework of conventional finite element method (FEM) based on standard Galerkin approximation, which models the cracks with disconnected cracking segments. The orientation of propagating cracks is determined by local criteria and no explicit or implic...

متن کامل

Finite Element-Based Model for Crack Propagation in Polycrystalline Materials∗

In this paper, we use an extended form of the finite element method to study failure in polycrystalline microstructures. Quasi-static crack propagation is conducted using the extended finite element method (X-FEM) and microstructures are simulated using a kinetic Monte Carlo Potts algorithm. In the X-FEM, the framework of partition of unity is used to enrich the classical finite element approxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999